

DUSP16 Antibody (N-term) Blocking Peptide

Synthetic peptide Catalog # BP8458a

Specification

DUSP16 Antibody (N-term) Blocking Peptide - Product Information

Primary Accession

Q9BY84

DUSP16 Antibody (N-term) Blocking Peptide - Additional Information

Gene ID 80824

Other Names

Dual specificity protein phosphatase 16, Mitogen-activated protein kinase phosphatase 7, MAP kinase phosphatase 7, MKP-7, DUSP16, KIAA1700, MKP7

Target/Specificity

The synthetic peptide sequence used to generate the antibody AP8458a was selected from the N-term region of human DUSP16. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

DUSP16 Antibody (N-term) Blocking Peptide - Protein Information

Name DUSP16

Synonyms KIAA1700, MKP7

Function

Dual specificity protein phosphatase involved in the inactivation of MAP kinases. Dephosphorylates MAPK10 bound to ARRB2.

Cellular Location

Cytoplasm. Nucleus. Cytoplasmic vesicle. Note=After dissociation upon AGTR stimulation, re-associates with ARRB2 on endocytic vesicles

DUSP16 Antibody (N-term) Blocking Peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Blocking Peptides

DUSP16 Antibody (N-term) Blocking Peptide - Images

DUSP16 Antibody (N-term) Blocking Peptide - Background

DUSP16 is involved in the inactivation of MAP kinases. The activation of mitogen-activated protein kinase (MAPK) cascades transduces various extracellular signals to the nucleus to induce gene expression, cell proliferation, differentiation, cell cycle arrest, and apoptosis. For full activation of MAPKs, dual-specificity kinases phosphorylate both threonine and tyrosine residues in MAPK TXY motifs. MKPs are dual-specificity phosphatases that dephosphorylate the TXY motif, thereby negatively regulating MAPK activity.

DUSP16 Antibody (N-term) Blocking Peptide - References

Katagiri, C., et al., J. Biol. Chem. 280(15):14716-14722 (2005). Hoornaert, I., et al., Oncogene 22(49):7728-7736 (2003). Masuda, K., et al., J. Biol. Chem. 278(34):32448-32456 (2003). Willoughby, E.A., et al., J. Biol. Chem. 278(12):10731-10736 (2003). Masuda, K., et al., J. Biol. Chem. 276(42):39002-39011 (2001).