

PKC Betall, Active recombinant protein

PKC, Protein kinase C beta II Catalog # PBV11280r

Specification

PKC Betall, Active recombinant protein - Product info

Primary Accession	<u>P05771</u>
Concentration	0.1
Calculated MW	~105.0 kDa KDa

PKC Betall, Active recombinant protein - Additional Info

Gene ID Gene Symbol Other Names PKC, Protein kinase C beta II	5579 PRKCB
Source Assay&Purity Assay2&Purity2 Recombinant Format	Baculovirus (Sf9 insect cells) SDS-PAGE; ≥79% HPLC; Yes

Storage

Liquid

-80°C; Recombinant protein in storage buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, 25% glycerol).

PKC Betall, Active recombinant protein - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

PKC Betall, Active recombinant protein - Images

PKC Betall, Active recombinant protein - Background

Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters.

Greenham determined the genomic structure of the PRKCβ gene, which consists of 18 exons spanning 375 kb (1). PRKCβ has been reported to be involved in many different cellular functions, such as B cell activation, apoptosis induction, endothelial cell proliferation, and intestinal sugar absorption. Leitges found that the 2 isoforms, PRKCβ1 and PRKCβ2, play an important role in B-cell activation and may be functionally linked to Bruton tyrosine kinase in antigen receptor-mediated signal transduction (2). Su proposed that PRKCβ inhibitors and inhibitors of other PRKC isoforms may be effective in treating disorders characterized by dysregulated NFKB survival signaling (3). Studies in mice also suggest that this kinase may also regulate neuronal functions and correlate fear-induced conflict behavior after stress (4).