PDK2 Antibody (C-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP7039b

Specification

PDK2 Antibody (C-term) - Product Information

- **Application**: WB, IHC-P, E
- **Primary Accession**: Q15119
- **Other Accession**: Q64536, Q9JK42
- **Reactivity**: Human
- **Predicted Reactivity**: Mouse, Rat
- **Host**: Rabbit
- **Clonality**: Polyclonal
- **Isotype**: Rabbit Ig
- **Antigen Region**: 378-407

PDK2 Antibody (C-term) - Additional Information

- **Gene ID**: 5164
- **Other Names**: [Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial, Pyruvate dehydrogenase kinase isoform 2, PDH kinase 2, PDKII, PDK2, PDHK2

Target/Specificity

This PDK2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 378-407 amino acids from the C-terminal region of human PDK2.

Dilution

- **WB**: ~1:1000
- **IHC-P**: ~1:50~100

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

PDK2 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

PDK2 Antibody (C-term) - Protein Information

Western blot analysis of PDK2 (arrow) using PDK2 Antibody (C-term)(Cat. #AP7039b). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the PDK2 gene (Lane 2) (Origene Technologies).
Name PDK2

Synonyms PDHK2

Function
Kinase that plays a key role in the regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate dehydrogenase decreases glucose utilization and increases fat metabolism. Mediates cellular responses to insulin. Plays an important role in maintaining normal blood glucose levels and in metabolic adaptation to nutrient availability. Via its regulation of pyruvate dehydrogenase activity, plays an important role in maintaining normal blood pH and in preventing the accumulation of ketone bodies under starvation. Plays a role in the regulation of cell proliferation and in resistance to apoptosis under oxidative stress. Plays a role in p53/TP53-mediated apoptosis.

Cellular Location
Mitochondrion matrix.

Tissue Location
Expressed in many tissues, with the highest level in heart and skeletal muscle, intermediate levels in brain, kidney, pancreas and liver, and low levels in placenta and lung.

PDK2 Antibody (C-term) - Protocols
Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytometry
- Cell Culture

PDK2 Antibody (C-term) - Background

PDK2 inhibits the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1 alpha subunit, thus contributing to the regulation of glucose metabolism.

PDK2 Antibody (C-term) - References

PDK2 Antibody (C-term) - Citations

- Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.
- The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity.
- Mechanism of a genetically encoded dark-to-bright reporter for caspase activity.
- PDH activation during in vitro muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation.
- Prolonged L-alanine exposure induces changes in metabolism, Ca(2+) handling and desensitization of insulin secretion in clonal pancreatic beta-cells.
- Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenase kinase 2 in head and neck squamous cell carcinoma.
- Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure.
- Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.
- Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets.
- Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation.