Register or Login
All
  • All
  • Uniprot Id
  • Catalog #
  • Peptide Sequence
COVID19
>   home   >   Products   >   Peptides   >   Blocking Peptides   >   RNF8 Antibody (C-term) Blocking peptide   

RNF8 Antibody (C-term) Blocking peptide

Synthetic peptide

     
  • SPECIFICATION
  • CITATIONS
  • PROTOCOLS
  • BACKGROUND
Product Information
Primary Accession O76064
Clone Names 70319137
Additional Information
Gene ID 9025
Other Names E3 ubiquitin-protein ligase RNF8, hRNF8, 632-, RING finger protein 8, RNF8, KIAA0646
Target/Specificity The synthetic peptide sequence used to generate the antibody AP13431b was selected from the C-term region of RNF8. A 10 to 100 fold molar excess to antibody is recommended. Precise conditions should be optimized for a particular assay.
Format Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.
StorageMaintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.
PrecautionsThis product is for research use only. Not for use in diagnostic or therapeutic procedures.
Protein Information
Name RNF8 {ECO:0000255|HAMAP-Rule:MF_03067}
Synonyms KIAA0646
Function E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the 'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites. Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys-63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non- histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys-63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'- linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'- linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites (PubMed:11322894, PubMed:14981089, PubMed:17724460, PubMed:18001824, PubMed:18001825, PubMed:18006705, PubMed:18077395, PubMed:18337245, PubMed:18948756, PubMed:19015238, PubMed:19124460, PubMed:19202061, PubMed:19203578, PubMed:19203579, PubMed:20550933, PubMed:21558560, PubMed:21857671, PubMed:21911360, PubMed:22266820, PubMed:22373579, PubMed:22531782, PubMed:22705371, PubMed:22865450, PubMed:22980979). Following DNA damage, mediates the ubiquitination and degradation of POLD4/p12, a subunit of DNA polymerase delta. In the absence of POLD4, DNA polymerase delta complex exhibits higher proofreading activity (PubMed:23233665). In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggravating telomere-induced genome instability in case of telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2 (PubMed:11322894, PubMed:14981089, PubMed:17724460, PubMed:18001824, PubMed:18001825, PubMed:18006705, PubMed:18077395, PubMed:18337245, PubMed:18948756, PubMed:19015238, PubMed:19124460, PubMed:19202061, PubMed:19203578, PubMed:19203579, PubMed:20550933, PubMed:21558560, PubMed:21857671, PubMed:21911360, PubMed:22266820, PubMed:22373579, PubMed:22531782, PubMed:22705371, PubMed:22865450, PubMed:22980979).
Cellular Location Nucleus {ECO:0000255|HAMAP-Rule:MF_03067, ECO:0000269|PubMed:11322894, ECO:0000269|PubMed:14981089, ECO:0000269|PubMed:16215985, ECO:0000269|PubMed:23233665}. Cytoplasm {ECO:0000255|HAMAP-Rule:MF_03067}. Midbody {ECO:0000255|HAMAP- Rule:MF_03067}. Chromosome, telomere {ECO:0000255|HAMAP-Rule:MF_03067} Note=Recruited at uncapped telomeres (By similarity). Following DNA damage, such as double-strand breaks, recruited to the sites of damage (PubMed:18001824, PubMed:18077395, PubMed:22266820, PubMed:23233665) During prophase, concomitant with nuclear envelope breakdown, localizes throughout the cell, with a dotted pattern. In telophase, again in the nucleus and also with a discrete dotted pattern in the cytoplasm. In late telophase and during cytokinesis, localizes in the midbody of the tubulin bridge joining the daughter cells. Does not seem to be associated with condensed chromosomes at any time during the cell cycle. During spermatogenesis, sequestered in the cytoplasm by PIWIL1: RNF8 is released following ubiquitination and degradation of PIWIL1 {ECO:0000255|HAMAP-Rule:MF_03067, ECO:0000269|PubMed:18001824, ECO:0000269|PubMed:18077395, ECO:0000269|PubMed:22266820, ECO:0000269|PubMed:23233665}
Tissue Location Ubiquitous. In fetal tissues, highest expression in brain, thymus and liver. In adult tissues, highest levels in brain and testis, lowest levels in peripheral blood cells
Research Areas
Citations (0)
citation

Thousands of laboratories across the world have published research that depended on the performance of antibodies from Abcepta to advance their research. Check out links to articles that cite our products in major peer-reviewed journals, organized by research category.

Submit your citation using an Abcepta antibody to
info@abcepta.com, and receive a free "I Love Antibodies" mug.

Background

The protein encoded by this gene contains a RING fingermotif and a FHA domain. This protein has been shown to interactwith several class II ubiquitin-conjugating enzymes (E2), includingUBE2E1/UBCH6, UBE2E2, and UBE2E3, and may act as an ubiquitinligase (E3) in the ubiquitination of certain nuclear proteins.Alternatively spliced transcript variants encoding distinctisoforms have been reported.

References

Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010)Koike, A., et al. Cancer Res. 70(17):6746-6756(2010)Lilley, C.E., et al. EMBO J. 29(5):943-955(2010)Noon, A.T., et al. Nat. Cell Biol. 12(2):177-184(2010)Ramachandran, S., et al. Proc. Natl. Acad. Sci. U.S.A. 107(2):809-814(2010)

FeedBack
Abcepta welcomes feedback from its customers.

If you have used an Abcepta product and would like to share how it has performed, please click on the "Submit Review" button and provide the requested information. Our staff will examine and post your review and contact you if needed.

If you have any additional inquiries please email technical services at tech@abcepta.com.

$ 277.78
Cat# BP13431b
Size:
Quantity:
Availability: 2 weeks
Bulk Size

Ordering Information

United States
AlbaniaAustraliaAustriaBelgiumBosnia & HerzegovinaBrazilBulgariaCanadaCentral AmericaChinaCroatiaCyprusCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHong KongHungaryIcelandIndiaIndonesiaIrelandIsraelItalyJapanLatviaLithuaniaLuxembourgMacedoniaMalaysiaMaltaNetherlandsNew ZealandNorwayPakistanPolandPortugalRomaniaSerbiaSingaporeSlovakiaSloveniaSouth AfricaSouth KoreaSpainSwedenSwitzerlandTaiwanTurkeyUnited KingdomUnited StatesVietnamWorldwideOthers
Abcepta, Inc.
(888) 735-7227 / (858) 622-0099
(858) 622-0609
USA Headquarters
(888) 735-7227 / (858) 622-0099 or (858) 875-1900

Shipping Information

Domestic orders (in stock items)
Shipped out the same day. Orders placed after 1 PM (PST) will ship out the next business day.
International orders
Contact your local distributors
Terms & Conditions
"